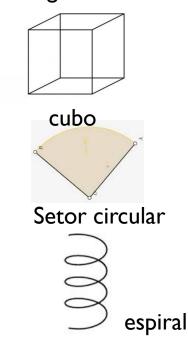
Noções de Geometria

Professora: Gianni Leal 6° B.

Figuras geométricas no espaço: mundo concreto e mundo abstrato

Mundo concreto: é mundo no qual vivemos e realizamos nossas atividades.

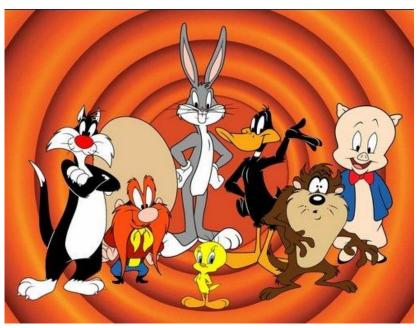
Mundo abstrato: é o mundo onde ocorrem pensamentos, reflexões, ideias e também representação mental que fazemos das coisas do mundo concreto.


A Geometria é um conhecimento matemático que se desenvolve no mundo abstrato, com base no mundo concreto, real.

Coisas do mundo concreto

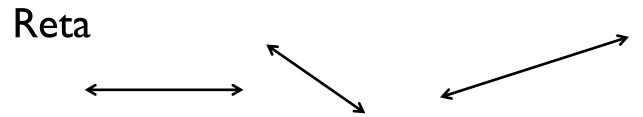
mola

Figuras geométricas

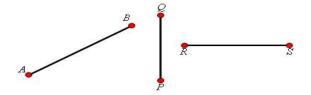

Classificação de figuras geométricas

Figuras bidimensionais	Unidimensionais
triângulo quadrado retângulo Losango Círculo trapézio	/ M N ES
Exemplo: Comprimento Largura	comprimento I dimensãos
	bidimensionais triangulo quadrado retângulo circulo trapézio Exemplo:

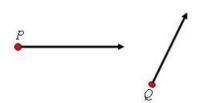
Desenhos em 2D e 3D


2D significa bidimensional, um desenho 2D possui imagens planas sem profundidade.

Já os desenhos feitos em 3D, que significa tridimensional, possuem profundidade.



Reta, segmento de reta e semirreta


(As setas indicam que a reta cresce infinitamente nas duas direções.)

Segmento de reta

Começa em um ponto e termina em outro ponto.

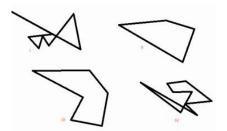
Semirreta

Em uma extremidade é limitada e na outra extremidade ilimitada.

Linhas

Vejam diferentes caminhos que ligam os pontos A e B.

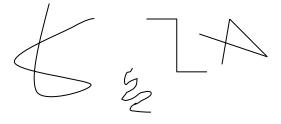
Linhas poligonais são linhas formadas por segmentos de retas não colineares.

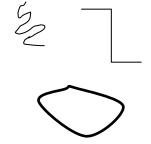


Cada caminho é representado por uma linha.

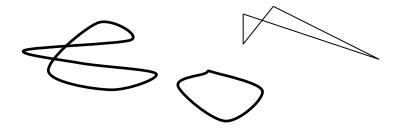
A linha verde é formada por segmentos de reta não colineares. Linhas como essa são denominadas linhas poligonais.

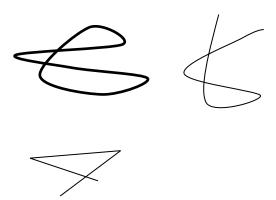
Exemplos: Linhas poligonais


Linhas não poligonais


Linhas

As linhas podem ser abertas ou fechadas.


Linhas abertas:

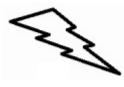

Linhas simples:

Linhas fechadas:

Linhas não simples:

Exemplos

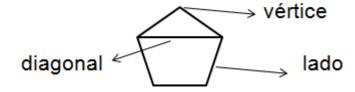
 Classifique as linhas abaixo em: poligonais ou não poligonais, abertas ou fechadas, simples ou não simples.


Não poligonal Aberta Não simples

Poligonal – Fechada Não simples Não poligonal Aberta Não simples

Poligonal Fechada Não simples

Poligonal Fechada Simples


Não poligonal Fechada Simples

Poligonal Aberta Simples

Polígonos

- Polígono é a figura plana formada por uma linha poligonal fechada e simples. Cite exemplos de polígonos.
- Elementos de um polígono:

- Lado: é cada um dos segmentos de reta que compõe o polígono.
- **Vértice**: é cada ponto comum a dois lados.
- **Diagonal:** é cada segmento de reta cujas extremidades são formadas por dois vértices não consecutivos.

Nomenclatura de polígonos

Polígono	Δ		\bigcirc			
Nome	triângulo	quadrilátero	pentágono	hexágono	heptágono	octógono
Quantidade de lados	3	4	5	6	7	8
Quantidade de vértices.	3	4	5	6	7	8

Polígono						100
Nome	eneágono	decágono	undecágono	dodecágono	Pentadecágono	icoságono
Quantidade de lados	9	10	11	12	15	20
Quantidade de vértices.	9	10	11	12	15	20

Nomenclatura de polígonos

NOME DOS POLÍGONOS ATÉ O INFINITO

Número de lados	Poligono	
1111	não existe	
15/1	não existe	
3	triangulo	
141	quadrilatero	
5	pentagono	
6	hexagono	
1 X	heptagono	
8	octogono	
8 1	eneagono	
10	decágono	
31/0	undecagono	
12	dodecágono	
13	tridecagono	
14	tetradecágono	
15	pentadecagono	
16	hexadecágono	
17	heptadecágono	
118	octodecágono	
119	eneadecágono	
20	coságono	

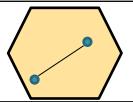
-		
Número de lados	Poligono	
/ 25 /	pentacoságon	
30	triacontágono	
40	tetracontágono	
/50/	pentacontágon	
60	hexacontagon	
/70 /	heptacontagon	
80	octacontagono	
90	eneacontagon	
100	hectagono	
1000	quilógono	
1.000.000	megágono	
109	gigagono	
10100	googolgono	
(do)()	circunferencia	
	VIII VI	

Exercício:

- Desenhe um:
- a) Heptágono
- b) Undecágono
- c) Quadrilátero
- d) dodecágono

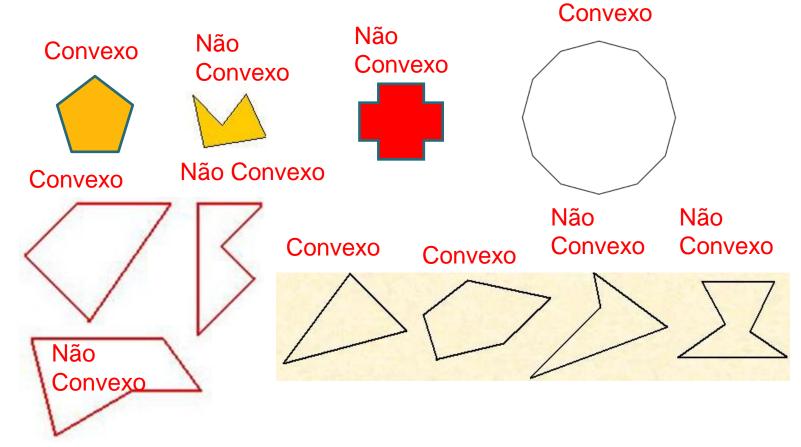
Classificação dos polígonos em convexo e não convexo.

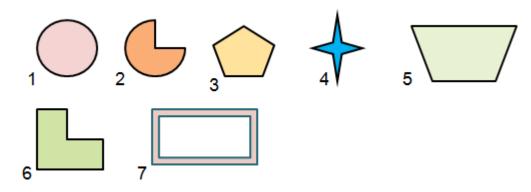
 Cada polígono delimita uma região plana que é chamada interior do polígono



Os polígonos podem ser: convexos ou não convexos (côncavo).

Convexos: para quaisquer dois pontos do seu interior, o segmento de reta com extremos nesses pontos está totalmente contido no interior do polígono.

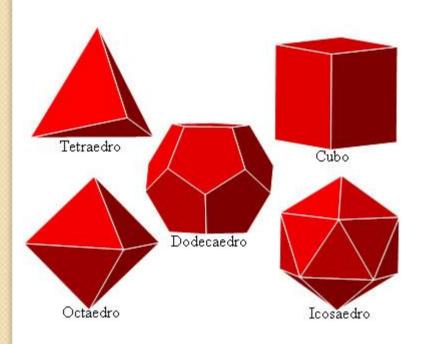

Não convexos: quando existem dois pontos do seu interior cujo segmento de reta com extremos nesses pontos não está totalmente contido no interior do polígono.


Exemplos:

 Diga se os polígonos abaixo são convexos ou não convexos

Regiões planas

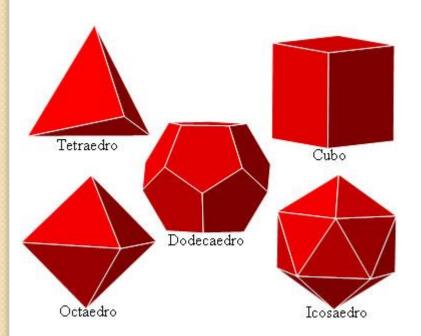
 Observe que o contorno de cada uma dessas regiões planas 3, 4, 5 e 6 é um polígono. Por isso, classificamos cada uma dessas regiões planas de regiões planas poligonais. As figuras 1, 2 e 7 são denominadas regiões planas não poligonais.



Círculo e circunferência.

Sólidos geométricos

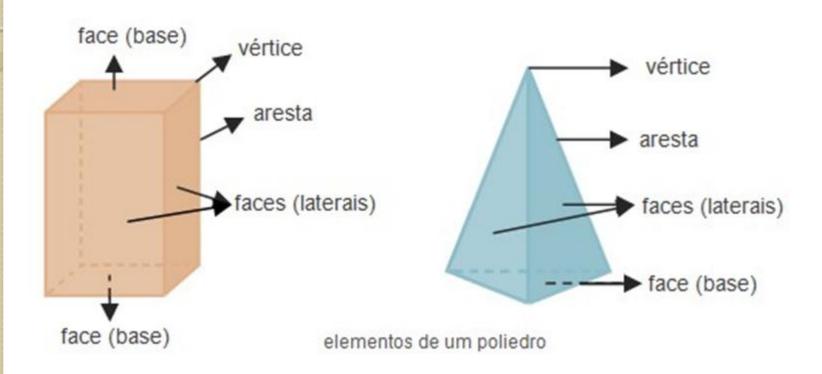
Observe estes sólidos e destaque uma diferença entre estes dois grupos.



Sólidos geométricos

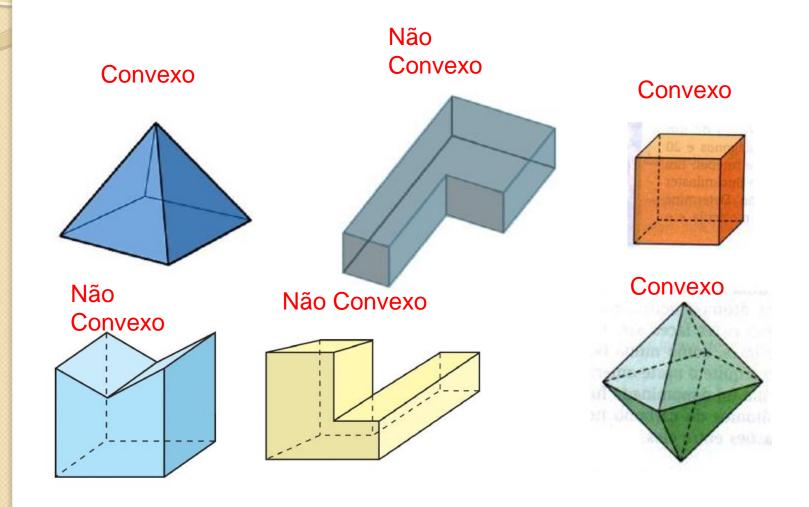
Poliedros

Poliedro é um sólido geométrico cuja superfície é formada apenas por regiões planas poligonais



Não poliedros ou corpos redondos

São sólidos que, quando colocados em um plano inclinado, rolam.

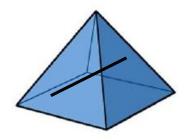


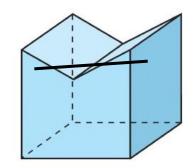
Elementos de um poliedro

- •Face: é cada região plana poligonal que o compõe.
- Aresta: cada segmento de reta comum a duas faces.
- Vértice: é cada ponto comum a duas arestas.

Classificação dos poliedros em convexo e não convexo

Classificação dos poliedros em convexo e não convexo

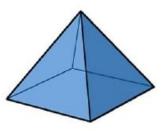

Cada poliedro delimita uma região do espaço que é denominada **região interna**.

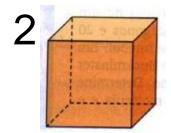

Poliedros convexos

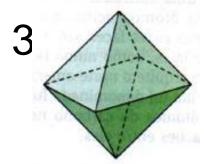
Um poliedro é **convexo** quando, para quaisquer dois pontos de seu interior, o segmento de reta com extremos nesses pontos está totalmente contido no interior do poliedro.

Poliedros não convexos

Um poliedro é **não convexo** quando existem dois pontos do seu interior cujo segmento de reta com extremos nesses pontos não está totalmente contido no interior do poliedro.






Relação nos poliedros convexos

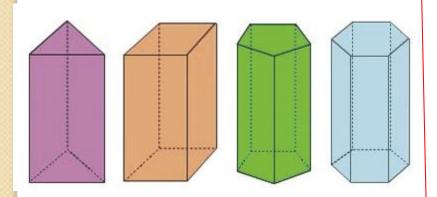
Observe os sólidos abaixo e complete a tabela:

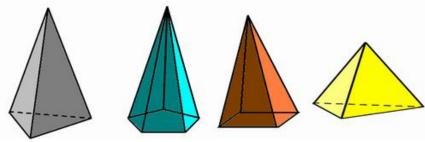
1

Poliedro	Vértices	Arestas	faces
I	5	8	5
2	8	12	6
3	6	12	8

Relação nos poliedros convexos

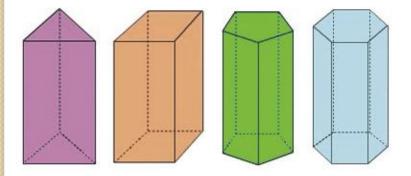
Poliedro	Vértices + Faces	Arestas + 2
1	5 + 5	8 + 2
2	8 + 6	12 + 2
3	6 + 8	12 + 2

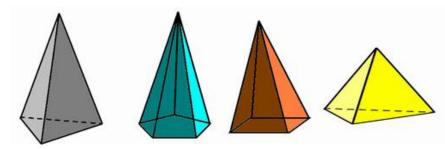

Relação de Euler:


Em todos os poliedros convexos, a soma da quantidade de vértices e da quantidade de faces é igual à quantidade de arestas mais duas unidades. Assim, vamos ter:

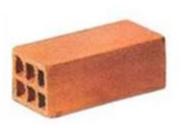
V + F = A + 2, onde V = vértice, F = face e A = aresta.

Poliedros


Observe as figuras abaixo e indique alguma diferença entre os dois grupos.


Poliedros

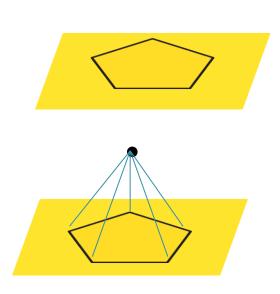
Prismas


As faces laterais de um prisma são sempre quadrangulares e suas bases são sempre regiões planas poligonais congruentes que estão contidas em planos paralelos. Nomeamos um prisma de acordo com a sua base.

Pirâmides

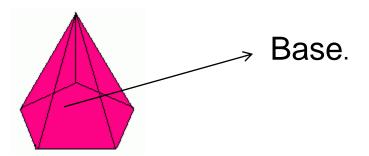
As faces laterais de uma pirâmide são sempre triangulares; sua base é uma região plana poligonal. Nomeamos uma pirâmide de acordo com a sua base.

Figuras que possuem formato de um prisma



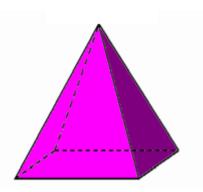
Pirâmides

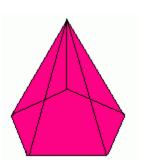
As pirâmides fazem parte do grupo dos poliedros convexos. Observe a construção de uma pirâmide:

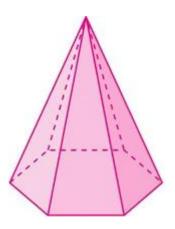

Primeiro desenhamos um polígono em um plano e depois consideramos um ponto, não contido neste plano.

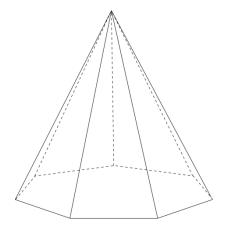
Depois ligamos esse ponto a cada um dos vértices do polígono.

Pirâmides


Agora temos uma pirâmide.



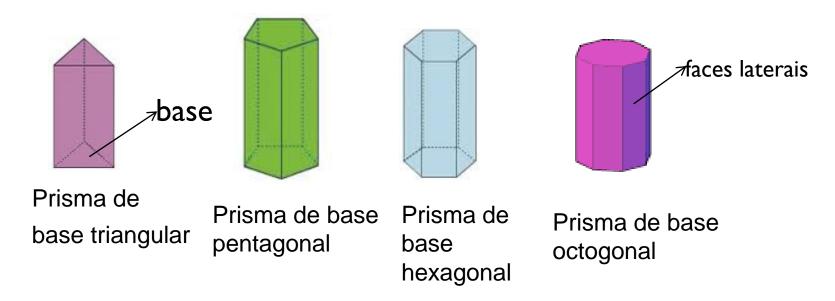

As demais faces são denominadas faces laterais.


As faces laterais de uma pirâmide são sempre triangulares. Sua base é uma região plana poligonal. Podemos nomear uma pirâmide de acordo com a sua base.

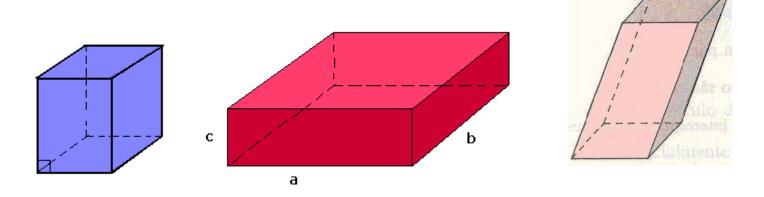
Pirâmides

Pirâmide	Vértices	Arestas	Faces
Base quadrangular	5	8	5
Base pentagonal	6	10	6
Base hexagonal	7	12	7
Base heptagonal	8	14	8

Figuras que possuem o formato de pirâmide



Prismas


Os prismas também fazem parte do grupo dos poliedros convexos. Observe os prismas apresentados a seguir:

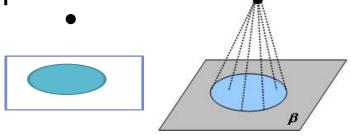
As faces laterais de um prisma são sempre quadrangulares e suas bases são regiões planas poligonais congruentes que estão contidas em planos paralelos. Nomeamos um prisma de acordo com a sua base.

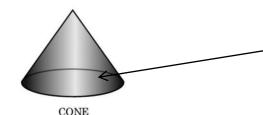
Paralelepípedos

Os paralelepípedos são prismas cujas faces são regiões planas quadrangulares que apresentam lados opostos paralelos. Quando um paralelepípedo apresenta todas as faces retangulares, dizemos que é um paralelepípedo retângulo.

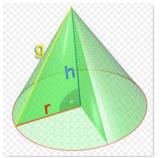
O cubo é um caso particular de paralelepípedo, onde todas as faces são regiões planas quadradas.

Não poliedros ou corpos redondos


Os não poliedros mais conhecidos são o cone, o cilindro e a esfera.


Cone

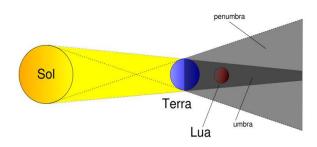
Podemos imaginar que o cone é construído da seguinte forma:


Desenhamos uma circunferência em um plano e um ponto fora desse plano.

II. Ligamos esse ponto a cada um dos pontos da circunferência. Agora temos um cone.

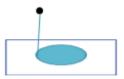
A parte plana da superfície do cone é denominada base.

Figuras que possuem o formato de um cone



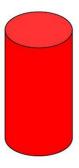
Catedral de Maringá

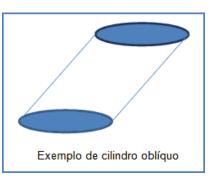
Eclipse lunar



Durante o eclipse lunar a terra projeta um cone de sombra no espaço.

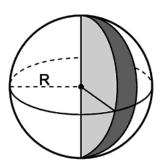
Cilindro


Podemos imaginar que um cilindro é construído da seguinte forma:


Desenhamos uma circunferência em um plano e consideramos um segmento de reta em que um dos extremos é um ponto da circunferência e o outro é um ponto qualquer.

II. Traçamos outros segmentos de reta, paralelos e de mesmo comprimento do considerado inicialmente, com um dos extremos em cada um dos outros pontos da circunferência.

Figuras que possuem o formato cilíndrico


Esfera

Uma esfera é construída da seguinte maneira:

I. Consideramos um ponto que será o centro da esfera e escolhemos uma medida, por exemplo, 2 cm.

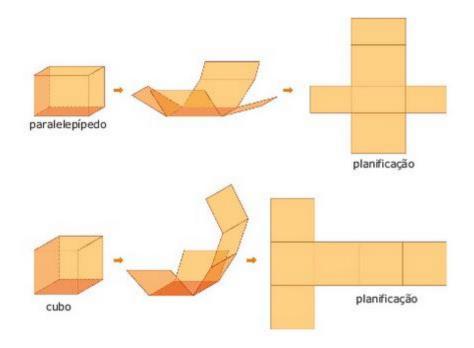
II. A esfera será, então, a figura formada por todos os pontos do espaço que distam até dois centímetros do centro da esfera.

Figuras que possuem o formato esférico

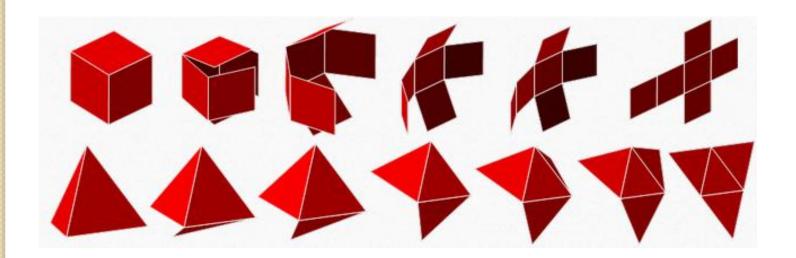
Trabalho para entregar na quarta, dia 11/05.

Pesquisar monumentos históricos que tenham formatos geométricos conhecidos, de sólidos. Contornar todos os formatos geométricos conhecidos e nomeá-los. Colocar também o nome do monumento e sua localização.

Exemplo:

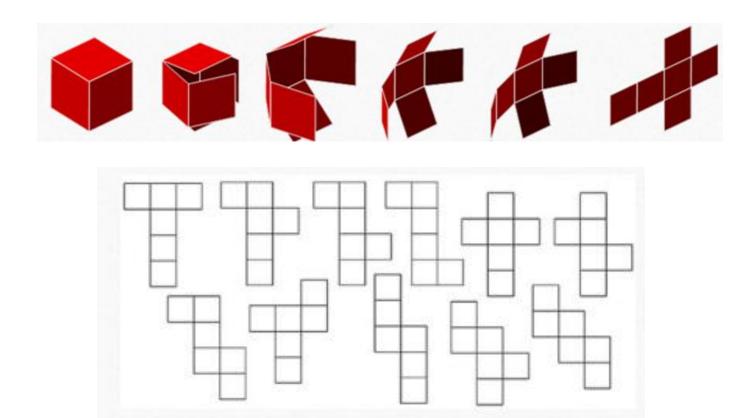

Nome do monumento: Big Bem Localizado em Londres.

Nome do sólido: Prisma de base quadrangular

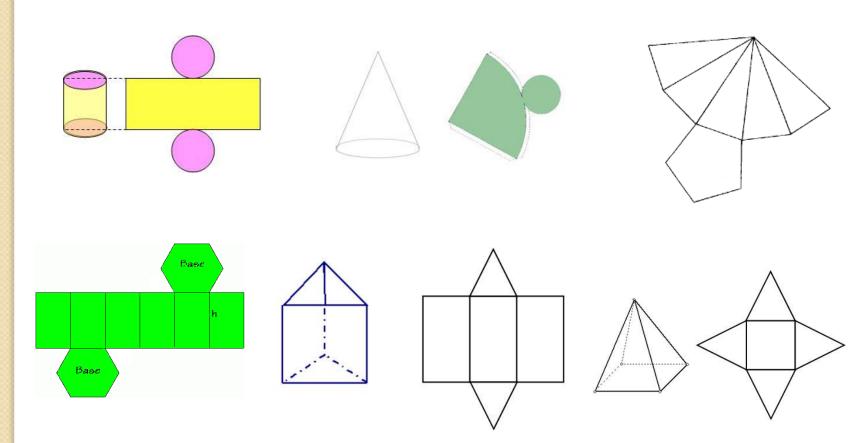

Fazer em folha de papel A4 e colocar borda com durex colorido ou pintar a borda.

Planificação

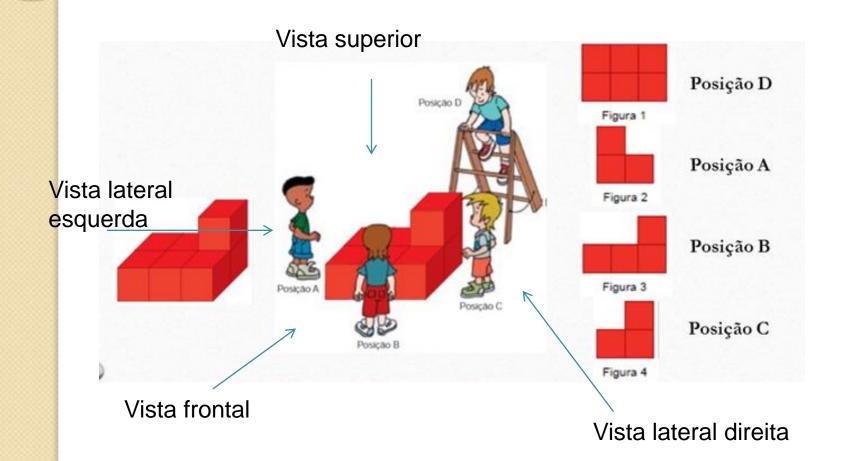
 A planificação da superfície de um sólido geométrico é a representação de toda sua superfície em um plano.



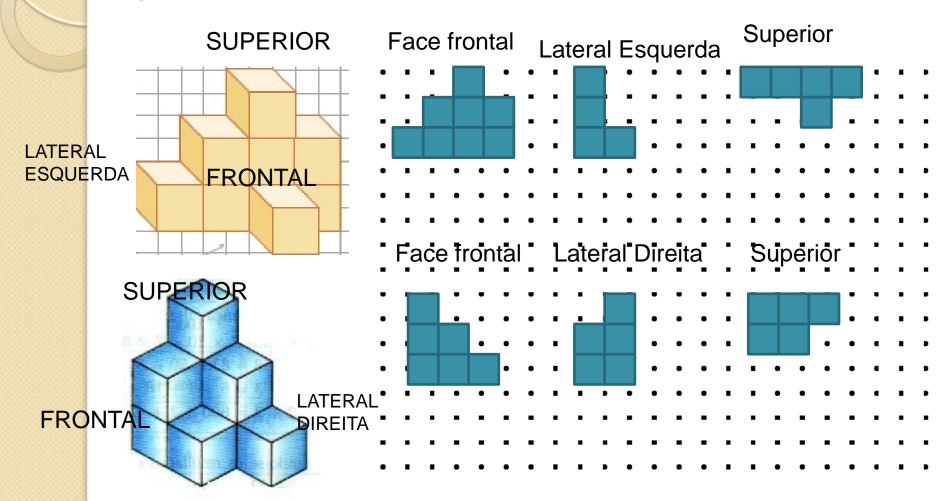
Exemplo da planificação do cubo e do tetraedro


Planificações do cubo

A superfície de um mesmo sólido geométrico pode ter várias planificações. Observe as planificações de um mesmo cubo.

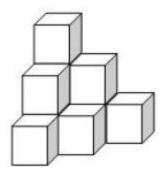

Planificação da superfície de poliedros e de não poliedros

• Veja a planificação das superfícies de alguns sólidos geométricos.

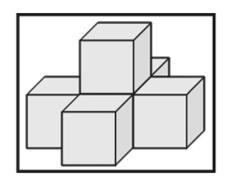


Vistas

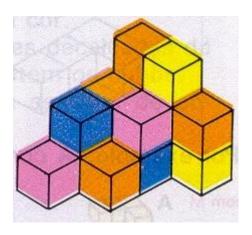
A figura a seguir foi visualizada pelas quatro crianças em diferentes posições.



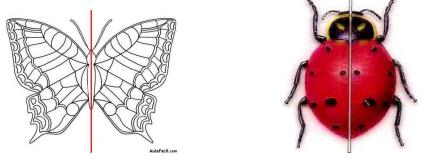
Analise as figura abaixo e desenhe na malha quadriculada, a vista frontal, lateral esquerda e superior.



Reproduza as faces frontais, laterais e superiores dos sólidos abaixo em malha quadriculada



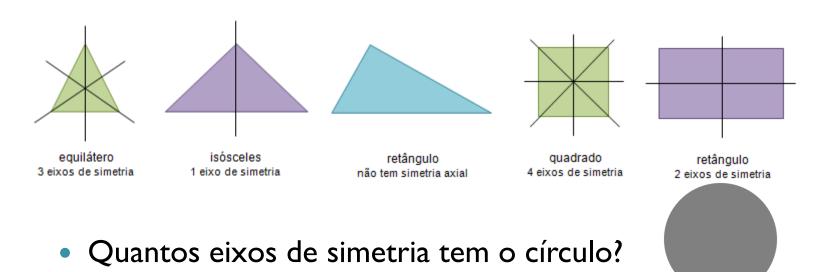
b)



c)

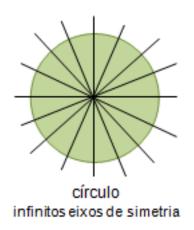
Simetria

As imagens abaixo apresentam simetria em relação a uma reta: é possível dobrá-las de modo que as duas partes que se sobrepõem coincidam.



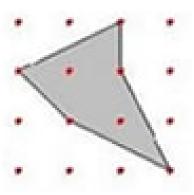
Essa simetria também é denominada **simetria axial.** A linha acima que divide a figura em duas partes iguais é denominada **eixo de simetria.** Algumas figuras geométricas também são simétricas em relação a uma reta.

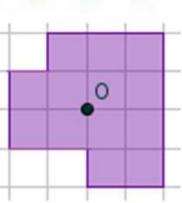
Simetria Axial

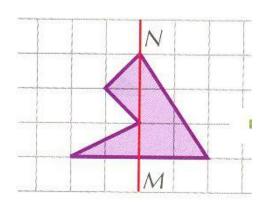

- Uma figura tem simetria axial quando tem pelo menos um eixo de simetria (reta que divide a figura em duas partes iguais que se podem sobrepor por reflexão).
- Uma figura geométrica pode ter mais de um eixo de simetria.

Simetria Axial

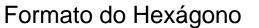
Solução:


O círculo tem infinitos eixos de simetria.




Figuras assimétricas


Quando a figura não apresenta simetria, dizemos que a figura é assimétrica.



Formato do Pentágono

Simetria

"A natureza está escrita em linguagem matemática."

Formato de Linhas

Formato da Espiral na Via Láctea

Formato esférico